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Abstract
We introduce hierarchically regularized entropy balancing as an extension to entropy balancing, a reweight-
ing method that adjusts weights for control group units to achieve covariate balance in observational studies
with binary treatments. Our proposed extension expands the feature space by including higher-order terms
(such as squared and cubic terms and interactions) of covariates and then achieves approximate balance on
the expanded features using ridge penalties with a hierarchical structure. Compared with entropy balancing,
this extension relaxes model dependency and improves the robustness of causal estimates while avoiding
optimization failure or highly concentrated weights. It prevents specification searches by minimizing user
discretion in selecting features to balance on and is also computationally more e�icient than kernel balanc-
ing, a kernel-based covariate balancing method. We demonstrate its performance through simulations and
an empirical example. We develop an open-source R package, hbal, to facilitate implementation.

Keywords: causal inference, statistical learning, covariate balance, weighting, entropy balancing.

1 Introduction
Entropy balancing (ebal) is a popular reweighting method that aims at estimating the average
treatment on the treated (ATT) using nonexperimental data with binary treatments (Hainmueller
2012). It adjusts the weights for the control units to achieve exact covariate balance by solving the
following constrained maximization problem:

max
w
H (w ) = −

∑
i ∈C

wi l og (wi /qi );

s .t .
∑
i ∈C

wiGi j = m j for j ∈ 1, . . . , J ;∑
i ∈C

wi = 1 andw ≥ 0 for all i ∈ C;

in whichw = {wi }i ∈C is set of solution weights for units in the control group (denoted as C); qi > 0

is the base weight for unit i (and
∑
i ∈C qi = 1); H (·) is the Kullback-Leibler divergence between the

distributions of the solution weights and base weights; and
∑
i ∈CwiGi j = m j specifies a set of J

balance constraints, whereG ∈ ÒJ includes J pretreatment covariates andm j is the mean of the
j th covariate of the treatment group.

Despite its appealing properties, such as exact balance, computational e�iciency, and double
robustness, ebal has two main drawbacks. First, it requires researchers to specify the moments
of the covariates to be balanced on, which leaves room for specification searching and selective
reporting. Second, when the number of control units is small relative to the number of available
covariates, the algorithm either does not converge or generates highly concentrated weights. As a
result, researchers face a dilemma that balancing on too few terms leads to biases while balancing
on too many terms may be infeasible or induce high variance due to extreme weights. To address
these problems, we propose hierarchically regularized entropy balancing (hbal) as an extension to
ebal. hbal achieves approximate balance on reasonably flexible functions of the covariates through
a ridge-regularized entropy balancing framework.
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2 Approximate Balancing with Hierarchical Regularization
Hainmueller (2012) proves that the global solution for each unit i ’s weight exists and is given by
w ebal
i

=
qi exp (−G ′

i
Z )∑

Di =0
qi exp (−G ′

i
Z ) , where Z = {λ1, λ2 . . . λJ }′ is a set of Lagrange multipliers for the balance

and normalizing constraints andDi = {0, 1} is the binary treatment indicator. Using the Lagrangian
multipliers and the solution weightsw ebal

i
, the constrained optimization problem can be rewritten

as the following dual problem:

min
Z
Ld = log ©­«

∑
i ∈C

qi exp ©­«−
J∑
j=1

λjGi j
ª®¬ª®¬ +

J∑
j=1

λjm j . (1)

A�er obtainingw ebal
i

, one can use a di�erence in means (DIM) approach to estimate the ATT:

τ̂ebal =
1

n1

∑
Di=1

Yi −
∑
Di=0

w ebal
i Yi .

in which n1 is the number of treated units. Zhao and Percival (2016) show that Problem (1) is an
M-estimator for the propensity score with a logistic link usingG as predictors, and the solution
weightsw ebal

i
belong to a class of inverse probability weights. They also show that under strong

ignorability and positivity, τ̂ebal is a doubly robust estimator for the ATT: when either the untreated
potential outcomeYi (0) or treatment assignment is linear inG , τ̂ebal is consistent—see Supporting
Materials (SM) for details.

In practice, the linearity assumption may be unrealistic. To make this assumption more plau-
sible, we can conduct a series expansion ofG , e.g., by including higher-order terms and various
kinds of interactions, obtainingX ∈ ÒT , (T � J ). However, exact balancing on high-dimensional
X is o�en infeasible; even when it is, the large number of balancing constraints may cause the
solution weights to be heavily concentrated on a few control units, resulting in high variance of the
ATT estimates. hbal addresses this problem by modifying the objective function in (1), i.e., adding
an `2 penalty with a hierarchical structure to the Lagrangian multipliers Z :

min
Z +

Ld = log
(∑
Di=0

qi exp
(
−

T∑
t=1

λtXi t

))
+

T∑
t=1

λtmt +
K∑
k=1

αk rk (2)

where Z + = {λ1 . . . λT }′ is a vector of Lagrangian multipliers corresponding toT moment condi-
tions. ∑K

k=1 αk rk is the newly added penalty term, in which αk is a scalar tuning parameter that
adjusts the strength of penalty for the k t h group, for k = 1, 2, . . . ,K ; rk =

∑
t ∈Pk λ

2
t is the squared

`2 norm of the Lagrangian multipliers (λt ) for moment conditions in the k t h group, in which Pk is
the set of their indices. We choose `2 penalty over `1 penalty mainly because the former is twice
di�erentiable, making computation much more e�icient. This grouped structure allows di�erential
strengths of regularization to be applied to di�erent groups of balance constraints and prioritizes
feature groups that have heavy influence on the overall covariate balance between the treatment
and control groups. For example, it is possible that two-way interactions are more important to
the overall balance in an application than the squared terms of the covariates (see the SM for a
performance comparison of hierarchical and nonhierarchical regularization). This optimization
problem givesw hbal

i
= qi exp (−X ′Z +)∑

Di =0
qi exp (−X ′Z +) (i ∈ C) and

τ̂hbal =
1

n1

∑
Di=1

Yi −
∑
Di=0

w hbal
i Yi .

Implementation details. Implementing hbal involves several technical details, such as grouping
moment conditions, selecting tuning parameters, and prescreening covariates. Due to space
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limitations, we only provide a sketch here and o�er more details in the SM.
In terms of grouping, we put all the level terms of G in the first group (k = 1); two-way in-

teractions (k = 2), squared terms (k = 3), three-way interactions (k = 4), interactions between
square and level terms (k = 5), and cubic terms (k = 6) each represents a separate group. Be-
cause the Lagrangian multipliers can be interpreted as covariate coe�icients in a logistic regression
for propensity scores, shrinking the Lagrangian multipliers di�erentially enables us to prioritize
groups of features in the expanded covariate space that are the more predictive of propensity
scores. By default, we impose a hierarchical structure by setting α1 = 0, i.e., hbal seeks exact
balance on the level terms just like ebal, and only regularizing higher moment constraints. When
α2 = α3 = · · · = αK = 0, hbal is reduced to ebal applied to the full series expansion of the covariates.
To select the tuning parameters, we combine a trust-region optimization method (Powell 1994)
with aV -fold cross-validation procedure that minimizes mean absolute error (MAE) of expanded
covariate balance between the held-out subsample of control units and the treated units. This
procedure encapsulates the intuition that the optimal Lagrangian multipliers, based on which
the solution weights are constructed, should generalize to randomly selected held-out data and
result in approximate covariate balance. While the proposed approach is data-driven, we also allow
researcher to incorporate their prior knowledge when applying hbal, e.g. by imposing custom
covariate groupings and by specifying the parameter space of the tuning parameters.

Combining hbalwith an outcomemodel. When the number of control units is small relative to
the number of moment conditions, hbalonly achieves approximate balance. To remove bias caused
by the remaining imbalance, we suggest combining hbal with an outcome model that includes
the same set of covariates in the moment conditions, which we label as hbal+. Because hbal gives
higher weights to units that have similar propensity scores to those of the treated units, this strategy
leads to e�iciency gain for a regression-based double selection approach. When combined with an
outcome model, an ATT estimator is given by

τ̂hbal+ =
1

n1

∑
Di=1

(Yi − ĝ0 (Gi )) −
∑
Di=0

w hbal (Yi − ĝ0 (Gi )),

where ĝ0 (Gi ) = X ′i β̂ is based on a linear regression on the expanded features. Zhao and Percival
(2016) show that τ̂hbal+ is consistent for the ATT when either g0 is linear in Xi orw hbal converges
to the logit of the true propensity scores. With non-zero tuning parameters, hbal achieves exact
balancing onG and only approximate balance onX \G . Hence, if the true propensity scores depend
onX \G ,w hbal does not converge to the logit of the true propensity scores, in which case a correctly
specified outcome model g0 ensures the consistency of τ̂hbal+.

Related work. hbal builds on a class of preprocessing methods that explicitly seek to achieve
approximate covariate balance for causal inference purposes (e.g., Imai and Ratkovic 2014; Zu-
bizarreta 2015; Athey, Imbens, and Wager 2018; Hazlett 2020; Ning, Sida, and Imai 2020). These
methods are shown to estimate propensity scores with loss functions targeting good covariate
balance (Zhao and Percival 2016; Wang and Zubizarreta 2019; Ben-Michael, Feller, and Rothstein
2021). hbal extends this line of research in that it aims at achieving approximate balance in a large
covariate space. Hence, hbal’s solution weights can be interpreted as penalized propensity scores
with a special loss function. Moreover, the balancing approach is closely connected to the survey
literature on calibrated weighting, or raking (e.g., Deming and Stephan 1940). The key component of
hbal, hierarchical ridge regularization, shares similarity with recent research in survey methods that
deal with high dimensionality of crosstabs of respondent characteristics (Caughey and Hartman
2017; Tan 2020; Ben-Michael, Feller, and Hartman 2021).
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3 Monte Carlo Evidence
To evaluate the performance of hbal, we conduct Monte Carlo simulations to compare hbal and
hbal+with five commonly used matching and weighting methods, including inverse propensity
score weighting (PSW) (e.g., Hirano, Imbens, and Ridder 2003), covariate balancing propensity
score (CBPS) (Imai and Ratkovic 2014), coarsened exact matching (CEM) (Iacus, King, and Porro
2012), entropy balancing (ebal) (Hainmueller 2012), and kernel balancing (kbal) (Hazlett 2020). To
illustrate the advantage of hierarchical regularization, we also report the results from using ebal
to balance on the serially expanded covariate set (ebal*). The naive DIM (Raw) estimator is also
included as a benchmark.

Design. We use six covariatesG = {G1,G2,G3,G4,G5,G6}, in whichG1, . . . ,G4 are drawn inde-
pendently from a multivariate normal distribution with mean 0, variance 1, and covariances of
0.2;G5 andG6 are independently drawn from Bernoulli distributions with probability of success
0.3 and 0.2 respectively. To simulate a complex treatment assignment process, we use all level
terms and a random subset of higher-order terms to be relevant for treatment assignment and
generate their individual e�ect from a normal distribution. Specifically, the treatment assignment
indicator is given byD = 1{f (G ) − 2 + ε > 0}, where f (G ) is a linear combination of the subset of
the serial expansion ofG and ε i .i .d .∼ N (0,

√
8).1 To capture the empirical variability in the outcome-

generating process, we consider three outcome designs with increasing degree of nonlinearity:
(1) linear:Y = G1 + G2 + G3 − G4 + G5 + G6 + u ; (2) nonlinearY = G1 + G

2
1 − G4G6 + u ; and (3)

trigonometric:Y = 2× cos(G1) − sin(π ×G2) +u , with u i .i .d .∼ N (0, 1) and the true treatment e�ect
fixed at 0 for all units. For PSW, CBPS, CEM, ebal, and kbal, we include only the original variablesG .
Note that kbal expands the covariate space through Gaussian kernels; for ebal*, hbal, and hbal+,
we include all 69 covariates in the third-degree series expansion ofG .

Results. Figure 1 presents the simulation result with sample size N = 900 and control to treat-
ment ratio 5:1. We report additional results with varying outcome designs, sample sizes, and control
to treatment ratios in the SM. The comparative performance of hbal (or hbal+) is similar across
di�erent simulation setups.

For the linear outcome design 1, most methods substantially reduce bias as compared to the
naive DIM estimator. One exception is ebal*, whose poor performance is caused by nonconvergence
of the ebal algorithm with many moment constraints. In comparison, hbal’s ability to discriminate
balance among covariate moments leads to superior performance in both bias and variance reduc-
tion. As the outcome-generating process becomes more complex, methods that rely only onG to
estimate propensity scores or weights perform poorly. Compared to ebal, ebal*, and kbal, hbal and
hbal+ yield estimates with substantially less bias and smaller variance in designs 2 and 3. These
results demonstrate that, when the data-generating process is not too far o� from a polynomial ex-
pansion of the covariates, hbal’s hierarchical structure is able to tailor the strengths of regularization
to the importance of balance constraints, thus reducing bias while maintaining a relatively small
variance of the estimates. In the SM, we provide additional evidence that hierarchical regularization
leads to higher correlation between the solution weights and the true propensity scores.

Moreover, hbal is also much more computationally e�icient and scalable than kbal. The bottom
right panel of Figure 1 shows the average running time across 500 samples for varying sample
sizes. Across sample sizes, hbal finds the solution weights using a fraction of kbal’s time and hbal’s
advantage of scalability becomes more evident as the sample size increases.

1. The selected covariates are G1, G2, G3, G4, G5,G6, G1G2, G1G5, G2G3, G2G4, G2G6, G3G6, G2
1 , G2

2 , G2
3 , G2

4 . The
selection of higher-order terms is a random draw from square and two-way interaction terms of the covariates. We also
include an intercept of −2 in f (G ) so that it is centered close to 0. Replication data and code are available at https://doi.
org/10.7910/DVN/QI2WP9.
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Figure 1. Monte Carlo evidence. The top-le�, top-right, and bottom-le� panels correspond to results from
outcome designs 1, 2, and 3, respectively. All three designs share the same treatment assignment mechanism,
i.e.,D = 1{f (G ) − 2 + ε > 0}. The bottom-right panel compares the speed between kbal and hbal.

4 Promotion Prospect and Circuit Court Judge Behavior
To illustrate how hbalworks in empirical settings, we replicate a recent article by Black and Owens
(2016), who study the e�ect of promotion prospect to the Supreme Court on the behavior of circuit
court judges. Using CEM, the authors show that judges who are on the president’s shortlist to
fill Supreme Court vacancies are more likely to vote in line with the president’s position during
the vacancy period as compared to the non-vacancy period; they find no such e�ect among non-
contending judges who stand little chance to be nominated to the Supreme Court. We focus on
whether circuit court judges ruled in line with the president as the outcome of interest. The binary
treatment variable is vacancy period (vs. non-vacancy period). To address potential confounding,
the authors use CEM to match cases on seven covariates that might influence a judge’s behavior
and the treatment, such as the judge’s Judicial Common Space (JCS) score, the judge’s ideological
alignment with the president, and whether the case decision was reversed by the circuit court.

In Figure 2, we compare the results from mean balancing on the level terms of the covariates
using ebal+ (shown in solid circle) and from balancing on a set of serially expanded covariate using
hbal+ (shown in solid triangle). To assess whether the ebal+ estimate is sensitive to di�erent model
specifications, we also include an additional 500 models in which random higher moments of the
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Figure 2. The e�ect of vacancy period on presidential ideological vote. The solid circle and triangle repre-
sent the ATT estimates from ebal+ using the original seven covariates and hbal+ using covariates a�er series
expansion, respectively, with 95% confidence intervals. The gray bars represent the 95% confidence intervals
of 500 ebal+ estimates using various combination of the covariates and their higher-order terms.

covariates are included (shown in gray). For both methods, we use the solution weights to estimate a
weighted linear regression and report 95% confidence intervals based on standard errors clustered
at the individual judge level. For contending judges, estimates from both methods indicate judges
are more likely to rule in line with the president during vacancy periods than non-vacancy periods,
although the estimate from ebal+ using the level terms only is not statistically significant at the
5% level. Because hbal+’s specification includes higher-order terms that can explain additional
variation in the outcome and treatment assignment, we obtain a more precise and likely more
reliable estimate than ebal+’s. For non-contending judges, ebal+’s estimate suggests that non-
contending judges tend to be more likely to rule in line with the president during a vacancy period,
while hbal+’s estimate shows no significant di�erence between the vacancy and non-vacancy
periods. In short, hbal+’s results are broadly in line with Black and Owens (2016)’ original findings
whereas the estimates from ebal+ for both contending and non-contending judges vary widely
depending on specifications, ranging from negative to positive e�ects.

5 Conclusion
In this letter, we extend ebal to hbal by introducing hierarchical regularization on the Lagrangian
multiplier in the transformed objective function. It achieves approximate balance on a potentially
large covariate space. Through simulations and an empirical study, we demonstratehbal’s desirable
properties in comparison to ebal and other commonly used preprocessing methods. We also show
that ebal is computationally more e�icient than kbal, another popular covariate balancing method.
hbal thus can serve as a building block for methods that seek approximate covariate balance. To
facilitate implementation, we develop an open source routine, hbal, in R .

In the SM, we provide more details about the identifying assumptions and theoretical guarantee
of hbal, its algorithm, implementation procedure, and inferential method, as well as additional
information on the simulation results and the empirical example. We also apply hbal to the famous
Lalonde data and find reassuring results, which are provided in the SM.
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